Boundaries and authenticity in the
Monument to Marchese Spinetta Malaspina

Sarah Healey-Dilkes and Jonathan Kemp

ABSTRACT The *Monument to Marchese Spinetta Malaspina*, a large-scale Renaissance stucco, marble and limestone memorial from Verona, Italy, has recently been dismantled for conservation before reinstallation in 2009, in the new Medieval and Renaissance Galleries at the Victoria and Albert Museum, London.

Since its removal from a Veronese church in 1886, the monument has been relocated three times, with its form being redefined with each reassembly. The properties of the monument’s predominant material, stucco, proved significant to the conservators involved in the monument’s deinstallation and preparation for reinstallation and raised several issues in relation to its authenticity. This contribution documents the chain of processes encountered in efforts to provide full documentation and disclosure of the monument’s complex past.

KEYWORDS alteration, authenticity, documentation, gypsum plaster, intervention, lime stucco

Introduction

In 2007 work began to dismantle the large-scale Renaissance monument to Marchese Spinetta Malaspina in the Victoria and Albert Museum (V&A), London, where it had been displayed in Room 50B2 for over 50 years. The sculpture (Museum no. 191–1887) will be a key object in the display ‘Tombs and Monuments’ in the V&A’s new Medieval and Renaissance Galleries, which are due to open in November 2009.

A composite object made of stucco, marble, ‘Verona marble’ (a Liassic-Dogger nodular limestone) and Istrian limestone, the monument is known to have been relocated on three separate occasions in its history. A particular consequence of these moves has been the disruption of the once contiguous stucco baldachin (canopy), which now contains over 250 joints. With each reinstallation, various materials have been introduced around these joints, successively modifying the overall appearance and form of the monument.

As most areas of previous restoration will be retained when the monument is reinstalled, there is an imperative to document all the information revealed and make it temporarily accessible during the treatment process. This study provides a brief summary of the history of the Malaspina monument and outlines its various reinstallations in both Italy and England. The analysis undertaken on the stucco, technical aspects of the stucco construction and the current conservation work are then described. Finally, this contribution examines how the monument is viewed and interpreted by those from different disciplines and discusses how the disparate knowledge residing with each specialist might be combined in a unified and accessible way.

Figure 1 *Monument to Marchese Spinetta Malaspina* photographed in 2006 in Gallery 50B2, Victoria and Albert Museum, London.
Object description and history

The monument, which is 8 m tall and 5 m at its widest point, is supported on large ‘Verona marble’ lion corbels. Malaspina is depicted as an equestrian figure flanked by two standing figures of soldiers holding open a large baldachin (canopy), which is itself surmounted by an angel. Below, a cenotaph has five niches to house sculptures. The stucco of the figures and baldachin has been overpainted; currently a grey-green colour is predominant, with some details highlighted in either black paint or with gilding. There are also some traces of gilding on areas of the cenotaph.

Marchese Spinetta Malaspina, who is commemorated in the monument, is recorded as having founded the Church of San Giovanni in 1352, together with an associated hospital and rest home, in Sacco, near Verona, Italy (Callahan 2008). In 1516 the church was destroyed by a fire, started by troops of Emperor Maximilian I during the War of the League of Cambrai (1508–16). In 1519 a new church of the same name was built within the walls of Verona and, by 1536, according to the inscription panel below the cenotaph, Marchese Jacopo Malaspina, a descendant of Spinetta, paid for the memorial to be ‘skillfully repaired’ and erected in the new church.

In 1804 the Church of San Giovanni was deconsecrated and possibly then, or at some later date, converted into a foundry. In 1886 the monument was offered for sale by a descendant of Malaspina and J.P. Richter, an agent for the V&A, bought it for 6,000 francs (£340). The church was demolished the following year.

Almost all of the stucco pieces, including the three main figures (made of plaster rather than terracotta as described by Richter)4 were broken into several pieces during transit to London. The extensive repairs to the monument, required as a result of this damage, were originally noted on acquisition by the authors. They were discovered by Richter in the possession of Malaspina and subsequently purchased for the V&A by J.P. Richter, taken before the monument’s removal in 1886 (Figure 4). At the apex of the baldachin, a tablet below the angel includes a Latin inscription (more discernable under ultraviolet (UV) light), which states ‘M. Spinetta founder year 1352.’ This appears on all of the engravings, as does the Latin inscription written on two (now missing) banderols held by the angel: ‘Accompany me happily to the heavens where they will fly to you.’ Neither the smaller marble inscription panel below the cenotaph nor the mysterious inscription that appears either side of the baldachin5 are recorded by dal Pozzo but are recorded by Manara suggesting that they were added in the intervening 200 years.

The inscription (to Leonardo da Malaspina and his son) on the large marble panel directly below the cenotaph does not appear in early engravings but its text is reported by dal Pozzo and Orti Manara as being at one time in the Church of San Giovanni.

A tomb slab was discovered inside the cenotaph when the memorial was dismantled in 1886. It was carved with the arms of Malaspina and inscribed in Latin with the legend ‘Here lies Visconte son of Marchese Spinetta [who] died in the year of our Lord 1362 day 3 of October’ (Pope-Hennessy 1964). It is thought to have been transferred from the original church in Sacco, along with the monument, and has always been on display at the museum below the Malaspina monument.

When the monument was acquired the five statues were missing from the niches of the cenotaph. Shortly after the acquisition they were discovered by Richter in the possession of a descendant of Malaspina and subsequently purchased for the museum. There are some discrepancies between the details of some of the figures and the engravings. Furthermore, the Virgin Mary figure is of a white-grey marble and of cruder form than the four limestone companion figures.

Baldachins were a popular motif for fourteenth-century funerary monuments in Italy, and in Verona the use of equestrian figures in such monuments dates to the tomb of the della Scala family (lords of Verona from the 1200s to 1400s). Similarities are evident between the V&A monument and other Veronese monuments, notably the 1426 tomb, predominately made of stucco, to Nicolo Brenzoni by Nanni di Bartolo, in the Church of San Fermo, and the monument to Cortesia Serego in the Church of Sant’Anastasia (1424–29), which is close in both style and form (Figure 5).

In contrast to the Malaspina monument, the Serego monument is heavily polychromed with, for example, traces of large floral designs of silver and gold gilt on a dark grey colour on its baldachin.4 The Serego monument is ascribed to Antonio da Firenze who was employed by the Serego family in 1435, and the Malaspina monument has been tentatively attributed to the same artist and dated to around 1430 (Pope-Hennessy 1964; Franco 1998: 36, 148; Wolters 1976: 96, 138; cited by Callahan 2008). The figure of Malaspina and the two warriors holding the baldachin also share some similarities with figures in the terracotta reliefs created by Michele da Firenze (c.1404–36) for the Pellegrini Chapel in the Church of Sant’ Anastasia (Schulz 1986: 36; cited by Callahan 2008).

Various anomalies in the depictions and museum records highlight the conjecture surrounding the origins and material authenticity of the Malaspina monument and raises the significant question of whether the monument dates from the 1430s (as ascribed to Antonio da Firenze) or the 1530s (the time of the ‘skilful repairs’). Louise Castellazzi (1988) suggests that due to the destruction of the church in 1516, the V&A monument cannot be the original monument erected by Spinetta’s heirs, but is a reconstruction or imitation. It is possible that thermo-
Figure 2 Engraving of the Monument to Marchese Spinetta Malaspina (from dal Pozzo 1678).

Figure 3 Engraving of the Monument to Marchese Spinetta Malaspina (from Orti Manara 1842).

Figure 4 Photograph of the Monument to Marchese Spinetta Malaspina in the deconsecrated Church of San Giovanni, Verona, as seen by J. P. Richter and sent with his letter describing the monument to the Victoria and Albert Museum in 1886.

Figure 5 The Serego monument, 1424–29, Church of Sant' Anastasia, Verona. (© D. Monniaux.)
luminescence dating of samples taken from various parts of the clay tile core of the stucco may help to answer this question.

Material description

During the recent conservation work, attention has been focused on the stucco of the baldachin, the equestrian figure and associated figures in order to understand the monument’s various historical alterations.

Broadly, the stucco can be categorised as being composed of two layers (a base of lime stucco and a surface stucco layer) with a monochrome surface with traces of gilding and at least three identifiable paint layers. There are also large areas of later gypsum plaster, with incorporated iron, wood and scrim reinforcements, associated with the stucco. Fragments of fired clay tiles, brick and stone are incorporated in both the stucco and the later gypsum plasters.

Analysis was undertaken on the lime stucco to identify its composition. Samples of the lime stucco base material and top coat were taken from various sites on the baldachin and horse and analysed using optical microscopy, X-ray diffraction (XRD) and Raman spectroscopy.

Optical microscopy revealed the presence of black, yellow, red and blue inclusions in a white powdery matrix. The samples fell into two groups based on their grain size: the three base material samples were all fine grained whereas the top coat samples were coarse grained. XRD analysis indicated that the samples were calcite-based with quartz and gypsum inclusions. Raman spectroscopy analysis of representative samples of base material and top coat confirmed the presence of calcite, gypsum and quartz and further identified the presence of carbon, iron oxide and lazurite inclusions.

The sample from the upper layer of the horse’s rear outer leg comprised a matrix of calcite with large particles of quartz and gypsum and sparsely distributed particles of carbon and red hematite particles. In some areas where the lime stucco has detached from the tile core, later repairs have been made using gypsum plasters. Elsewhere, lime stucco fragments seem to have been reused as fill material. One sample of this reused base material had some yellow areas detected under an optical microscope, and these areas produced a Raman spectrum suggestive of organic material.

While the analysis reveals the mineral composition of the stucco, it is the interaction between the different materials and layers that is key to the stability of the monument. The construction of the monument involved the following phases.

1 Production and application of the lime stucco

The general composition of stucco has been described in many publications (Vitruvius 1999 [1450]; Vasari 1960 [1568]). Stucco composition can vary according to traditions and the available raw materials and may be adjusted for particular uses or styles. These basic recipes would be further modified by additives, which would alter the working properties, adhesion or durability of the mixture. Generally, stucco is applied and worked with hand tools in successive layers, wet on wet, coarser to finer, in situ. The whole process was rapid; for example Italian stucco workers at Garsten Monastery in Austria, worked so that ‘nearly every day a small angel and every second day a life-sized one was finished’ (Koller 1978: 223–69; Koller et al. 1986).

Some of the stucco elements of the Malaspina monument, including the neck and head of the horse and the figure of Malaspina, were modelled around a fired clay tile core (Figure 6). A base lime mix was first laid to a thickness of no more than 30 mm, and then finished with a 10 mm thick buff-coloured top coat. Where the lime stucco is exposed on the reverse of some sections of the baldachin, these layer thicknesses are repeated and suggest that the baldachin was modelled directly onto an interior wall of the church using the same wet-on-wet applications of a continuous lime stucco frieze, rather than made off-site as panels and brought in for construction. These two layers have been found to be the only applications of lime stucco on the monument, which strongly suggests that they were all contemporary and formed during one period of production.

2 The horse

The horse’s body is hollow and open at the back. Although the extensive use of iron, brick and wood as supporting structures in later restorations is evident within its torso, there are no perceivable traces of an original armature. The horse’s head, legs and the area between the body and legs exhibit protruding ferrous bars which, when X-radiographed, were revealed to be continuous through each element and furthermore pierced by fairly regularly spaced holes.

There was, however, no armature apparent within the torso walling, which appears to be only 50–60 mm thick. This suggests that the horse’s body might have been pre-cast and then placed in position before in-situ modelling of the legs and head. The two iron armatures, protruding visibly from the outer legs, are also pierced with holes, and, when X-radiographed, show one or two pins set perpendicularly through the holes, which may have been made to aid keying during the modelling of the stucco legs. Further research is required before any firm conclusions can be drawn.
It was hoped that the X-radiographs would also help to identify density differences between the various plasters and allow areas of lime stucco to be distinguished from later restoration plasters but this proved to be technically impossible.

3 Interventions made during past deinstallations and transport of the monument

Although the monument was removed from its architectural context in Verona, Richter’s original photograph and letter of 11 January 1886 to the Secretary of the Science and Art Department, South Kensington Museum (later V&A) reveal that the baldachin was recessed into the surrounding wall surfaces. Before Richter removed the monument he mistakenly writes in the letter that the ‘whole upper portion, including the horse, the figures and imaginary rocks … are in terracotta, possibly forming one piece’. He then goes on to note that ‘the divisions, if there are any, have been plastered over with special care. At any rate they are not noticeable now.’

Richter reported that the monument was difficult to remove. He made a schematic drawing to show where the upper portion was to be cut into 65 pieces (Figure 7), but it is unclear if he made the cuts or if joints were already there, hidden beneath later plaster as a result of an earlier relocation. It is also unclear how much reinforcement of the stucco pieces, if any, was executed before the monument’s transportation, as on arrival in London it was discovered that nearly every part of the stucco was fragmented and broken.

4 Past interventions made to reinstall the monument

During the 2007 deinstallation, and probably during the previous move from Gallery 50A to Gallery 50B2, conservators cut the stucco following the Richter drawing. Cutting the stucco into 65 pieces produced around 250 joints. With every de/reinstallation the reverse of each stucco section has been reinforced. Wet-on-dry additions of various gypsum-based browning (containing perlite), bonding (containing vermiculite) and high purity gypsum Herculite plasters, as well as cement, have all been used to secure a variety of brick, stone, wood, scrim and ironwork supports to the pieces. The reinforcement has not only made the sections heavier but also increased their dimensions. For example, the depth has increased by up to one-third in some places. Gypsum plaster, used for joining between sections during reconstruction, has also made the sections wider. Furthermore, a number of the sections have straight edges and imprints of wood grain indicating that, during an earlier museum restoration, the sections were boxed up and gypsum plaster poured in to make up any missing areas of their edges. This process also provided clean flat edges for the reconstruction. These changes, together with the dimensional restrictions imposed by the V&A’s gallery architecture, have significant implications for the redisplay of the monument.

The cross-section stratigraphies of the joints revealed during the conservation treatment clearly expose evidence of cumulative loss, addition and, ultimately, enlargement. They also reveal gypsum plaster additions on the front surface of the monument, for example, the drapery of the baldachin. These additions are coated with a drab green acrylic paint, which suggests that large areas of the baldachin’s front elevation have been heavily restored. Comparisons with Richter’s photograph show clear differences, for example, between the rock-like formation in the lower quarter of the baldachin. The 2007 deinstallation revealed that all of the stucco-like elements including, and beneath, the ‘shelf’ on which the horse and figures stand are made from gypsum plaster and wood and would have been executed subsequent to the monument’s acquisition by the Museum.

Thus both the internal and external boundaries of the stucco of the monument have been subjected to redefinition with an ever-increasing degree of interpretation. Every time the pieces have not quite lined up during the reassembly, restorers have both gap filled and compensated for misaligned joins by applying gypsum plaster in an attempt to present a contiguous surface, thus redefining the form of the baldachin in all directions.

Conservation

Conservation practice, framed by codes of ethics that capture the current zeitgeist of the conservation community, generally relies on an interpretation of the component-on-component
records of an object, reinforced by analysis, to determine, for example, the sequence of past restorations. This often requires knowledge of both the original technology by which objects were made, and the technology used in any later restoration or conservation processes. It is through this physical evidence that conservators can better plan their own interventions.

In keeping with the idea that any intervention will be referenced in the future, the clear documentation of treatments and interventions carried out on the monument has been key and, where appropriate, interventions are being made as materially evident as possible to aid in their potential future removal.

Within the context of the wider demands of the Medieval and Renaissance project, the level of conservation has been subject to various constraints. While some objects require considerable investigation, limits on resources and the large number of complex objects to be installed in the galleries mean that the current work on the Malaspina monument has largely focused on ensuring the structural stability of all elements and has included:

- Stabilisation of each section of the baldachin: any previous museum restoration materials in an active, or potential, state of deterioration are being removed, including all iron and wood inclusions, along with extraneous or unstable restoration plaster/brick elements.
- Deliberate use of colour and texture to distinguish the new lime mortars used for gap fill from both the original extant lime stucco and earlier treatments. Where new gypsum plaster has been used to secure jute scrim and/or stainless steel reinforcement, it has been pigmented to distinguish it from the older gypsum plaster restorations.
- The application, to the exposed original lime stucco, of a physical interface of fine cotton mesh as a separation layer where new gypsum plaster will be used for the reconstruction. This interface, which further demarcates old from new, has been fixed with a 10% solution of an acrylic emulsion polymer, Primal B60A (an ethyl acrylate methyl methacrylate), in deionised water. This mixture has also been used to consolidate the lime stucco and helps to mitigate any possible water ingress during the reinstallation process.
- The specification of hydraulic lime mixes (to be colour matched to the existing monochromatic paint layer) for both surface fills and for pointing during reinstallation. All exposed joints have been sealed with a 10% application of Primal B60a to protect against potential water uptake during the reinstallation.

Discussion

Having outlined the art historical research, material investigation and the past and present treatments of the Malaspina monument, it is appropriate to consider the wider question of authenticity raised by the consideration of the (temporarily) exposed stratigraphies of the cross-sections of the joints in the stucco elements.

Some previous interventions made to the stucco were structural in nature and made to compensate for numerous material weaknesses, with the aim of protecting the object from further damage and loss. Other interventions, executed to fill lacunae created by earlier deinstallations, have redefined the surface of the stucco, changing its visual appearance. These can be considered as corruptions of the monument’s material authenticity.

In current conservation practice, when such restorations are necessary, visual clues are used to help the viewer gain an impression of the original object while still being able to distinguish between the original fabric and any alterations or additions. For example, ICOM’s 2006 Code of Ethics states that:

All conservation procedures should be documented and as reversible as possible, and all alterations should be clearly distinguishable from the original object or specimen (ICOM 2006: authors’ emphasis).

Where older and more integrated restorations cannot be removed due, for example, to the risks to the object, or because they have become inherently associated with the visual appearance of the object or there are insufficient resources to remove them, then there is the imperative to provide information that differentiates between the object and any such alteration. This requires that these restorations be characterised in a way that indicates their nature and construction. Where this is physically impossible, or is undesirable, a logical extension is for such information to be made available via some other platform, specifically documentation that can be readily accessed by the public. Furthermore, where this documentation includes the traditional material-based conservation records, it should also link with records of the decision-making processes that have resulted in the object being presented in a particular way.

In the case of the Malaspina monument, while such decisions and guidance are recorded in the Museum’s project files, making clear links between this information, the conservation documentation and the object would allow a greater understanding of the conservation process. Thus, for example, the reasons why conservators were unable to comprehensively map areas of original lime stucco against the later restorations need to be included in the documentation available to the public. The public, should they so wish, can then ‘track through’ the same uncertainties as those that faced conservators, and better appreciate the decisions made in the treatment of an object.

Making such information available would shift compliance with ethical codes away from the problems of determining and distinguishing the material authenticity of an object to issues associated with presenting all of the relevant information that shapes the current display of that object to the public. This has the added benefit of providing a detailed record that will allow a more successful and complete tracking of an object’s history and care, and serves to highlight the degree and causes of any deviation from standard procedures. This also ensures that a complete record will be available to aid future treatment or research.

This approach would positively integrate all information about an object’s care into the wider and changing ‘knowledge environment’, the digitally based and networked
economy in which open access to information and a many-to-many exchange in cultural content is becoming the norm. The Museums Association’s Code of Ethics urges that museums should ‘develop mechanisms that encourage people to research collections, develop their own ideas about them and participate in a variety of ways in shaping the interpretations offered by the museum.’ Furthermore, such a change is underwritten by recent UK legislation.

Recognising, understanding and overcoming the gaps and contradictions between the material authenticity of an object and the authenticity of the observer’s experience can be expressed neatly via the object record. This record should then become a major part of any institution’s collective knowledge output that is openly provided to present and future audiences. Such a complete offering will also help to reinforce the understanding that the current display of an object is only a part of its continuing history.

Acknowledgements

Our thanks go to colleagues at the V&A; Bhavesh Shah for the materials analysis, Paul Robbins for his X-ray expertise, and Peta Motture, Chief Curator and Meghan Callahan, Kress Curatorial Fellow on the British Museum, Andrew Middleton and Philippa Duffus, for further materials analysis.

Notes

1. The original documents are held in the museum’s Registry – V&A Archive, MA/2/M Nominal File: Malaspina Monument, registered papers RP/1886/325.
2. For original Latin texts and full details of the inscriptions see Callahan 2008.
3. See note 2 above.
5. Analytical results suggest the use of a zinc oxide or titanium dioxide component in a black pigment and a gold or copper gild on top of iron or lead oxide in some gilding. Empirically, the general surface polychromy is difficult to differentiate as substantial areas of the stucco elements have been repainted in drab olive greens, greys and browns; pigment cross-sections will be taken to establish the sequences of polychromy.
6. Initial samples were examined by optical microscopy and XRD by Bhavesh Shah (V&A). Further samples were analysed by optical microscopy, XRD and Raman spectroscopy by Philippa Duffus (British Museum).
8. The Freedom of Information Act 2000 is the UK government legislation defining what information public sector organisations are obliged to provide on request. Essentially, it gives the public general right of access to documents and information held by public institutions including museums. See http://www.opsi.gov.uk/acts/acts2000/20000036.htm (accessed February 2008).
9. For a full treatment of some of the concepts underlying this discussion, see Kemp forthcoming

References

Callahan, M. 2008 ‘Entry on the Monument to Marchese Spinetta Malaspina (Museum no. 191-1887)’. In the V&A Museum’s Collections Information System (CIS).

Authors’ addresses

Principal author for correspondence: Sarah Healey-Dilkes, Sculpture Conservation, Victoria and Albert Museum, South Kensington, London SW7 2RL, UK (shealey@vam.ac.uk).
Jonathan Kemp, Sculpture Conservation, Victoria and Albert Museum, South Kensington, London SW7 2RL, UK (jkemp@vam.ac.uk).